THE RELATIONSHIP OF GRAPHITE/AsF5 INTERCALATION COMPOUNDS TO $C_x^{*}AsF_6^{-}$ Salts

Fujio Okino* and Neil Bartlett

Department of Chemistry and Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (U.S.A.)

Graphite intercalated by AsFs has been reported to give compounds of formula $C_{\theta n}AsF_5$ where n is the stage. It is doubtful however if materials of exact composition $C_{\theta n}AsF_5$ have ever been obtained. The intercalation of graphite by AsFs is associated with electron oxidation of the graphite according to the equation: $3AsF_5 + 2e^- + 2AsF_6^- + AsF_3$. Because of the easy removal or displacement of AsF_3 the As:F ratio is readily increased beyond 5. By treating graphite with excess AsF_5 , removing volatiles under vacuum and repeating the cycle seven times a first stage salt $C_{10}^+AsF_6^-$ ($C_0 = 7.96$ Å) is made. Interaction of graphite with AsF_5 in the molar ratio 8:1, within a small volume reactor, yields a material of approximate composition C_0AsF_5 . The major component of the volatiles at the onset of their removal is AsF_5 , but, at a composition close to $C_{10}AsF_5$, is AsF_3 . 'Graphite AsF_5 ' can be prepared by adding AsF_3 to C_xAsF_6 salts. The electrical conductivities of 'AsF_5' and AsF_6 relatives will be compared and discussed.

I-46

FLUOROSULFATE CONTAINING INTERCALATION COMPOUNDS

S. Karunanithy* and F. Aubke

Department of Chemistry, University of British Columbia, Vancouver, B.C. V6T 1Y6 (Canada)

Direct oxidative intercalation of bis(fluorosulfury])peroxide, $S_20_6F_2$ into graphite has been reported (1) to yield a binary graphite salt of the composition C_0S0_3F . We report on reactions of this compound. Solvolysis in HS0₃CF₃ yields quantitatively $C_{12}S0_3CF_3$ while with SbF₅, C_0SbF_6 is formed. The intercalation of BrS0₃F and ClS0₃F is studied as well. In the first case $C_{12}BrS0_3F$ is formed. Subsequent reaction with $S_20_6F_2$ yields $C_{16}Br(S0_3F)_3$. With ClS0₃F no stable chlorine containing intercalates form and materials of the composition $C_{10}S0_3F$ result instead. The results of Raman, IR, X-ray diffraction and ¹⁹F-nmr are discussed.

1 N. Barlett, R.N. Biagioni, B.W. McQuillan, A.S. Robertson and A.C. Thompson, J. Chem. Soc. Chem. Commun., 200 (1978).